martes, 29 de marzo de 2011

APLICACIONES DE LA LEY DE COULOMB

APLICACION

Aplicaciones de la Ley de Coulomb
Ejemplo 1.
Esferas en contacto.
Dos esferas A y B están en el vacío separadas por una distancia de 10 cm. Tienen cargas eléctricas de qa= +3x10-6C y qb= - 8x10-6C. Una esfera C en estado neutro, primero toca a la esfera A y después a B. Si la esfera C después de tocar a B se separa del sistema, Calcular la fuerza con que se accionan las cargas de Ay B
     

Solución:
Contacto de C con A
qc+ qa= 0 + +3x10-6C = +3x10-6C
Cada esfera se carga con la mitad qc =qa = + 1,5 x 10-6 C
Contacto de C con B
qc+ qb= +1,5x10-6C - 8x10-6C= -6,5x10-6C
Cada esfera se carga con la mitad qc= qb= -3,25x10-6C
El valor de la fuerza se calcula aplicando la ley de Coulomb:




F = 4,38 N
Como las cargas tienen signos contrarios se atraen.
Se tiene que calcular las cargas finales de las esferas A y B, recordando que cuando dos esferas se ponen en contacto, la carga se reparte en partes iguales.
Ejemplo 2.
El átomo de hidrógeno.
El electrón y el protón de un átomo de hidrógeno están separados en promedio por una distancia aproximada de 5,3X10¯¹¹m.  Calcúlese la magnitud de la fuerza eléctrica y de la fuerza gravitacional entre las dos partículas.

Solución.
De la ley de Coulomb, podemos determinar que la fuerza de atracción eléctrica tiene una magnitud de




F = 8,2 x 10-8 New
Usando la ley de la gravitación universal de Newton se encuentra que la fuerza gravitacional tiene una magnitud de:






F = 3,6 x 10-47 New
La mejor forma de comparar las fuerzas es determinando su cociente:

La fuerza eléctrica es más de 1039 veces mayor que la fuerza gravitacional. En otras palabras, las fuerzas eléctricas que se ejercen entre las partículas atómicas son tan superiores a las fuerzas gravitacionales que éstas pueden ser totalmente despreciadas.


EJEMPLOS DE LA LEY DE COULOMB

EJEMPLO
Las fuerzas que se ejercen entre dos cargas eléctricas son directamente proporcional a sus cantidades de electricidad e inversamente proporcionales al cuadrado de la distancia que las separa".

F=(k)qq1/r2

k = 9 x 109 Nm2/C2
q q1 = cargas del electrón (C)
r2 = distancia al cuadrado (m2)
F = fuerza (N)

EJEMPLO DE APLICACIÓN DE LEY DE COULOMB
Se tienen dos esferas cargadas eléctricamente con 4x10-8 C y 2.3x10-7 C respectivamente y están separadas 35 cm en el aire. Calcular la fuerza eléctrica de atracción entre ellas.

F =( k)qq1/r2

F= 9 x 109 Nm2/C2 (4x10-8 C )(2.3x10-7C)/(0.35 m)2

F = 6.85375x10-2 N

EXPLICACION DE LA LEY DE COULOMB

           EXPLICACION

Suponga que se tiene tres cargas puntuales localizadas en los vértices de un triángulo recto, como se muestra en la figura, donde q1 = -80 C, q2 = 50 C y q3 = 70 C, distancia AC = 30 cm, distancia AB = 40 cm. Calcular la fuerza sobre la carga q3 debida a las cargas q1 y q2.

Las direcciones de las fuerzas sabemos coinciden con las líneas que unen a cada par de cargas puntuales. La fuerza que q1 ejerce sobre q3, F31, es de atracción. La fuerza que q2 ejerce sobre q3, F32, es de repulsión. Así, las fuerzas F31 y F32 tienen las direcciones que se indican. La separación entre q3 y q1 se obtiene de (CB)2 = (AC)2 + (AB)2 = (0.3 m)2 + (0.4 m)2, de donde CB = 0.5 m.
Las magnitudes de tales fuerzas son:
F31 = [(9x109 Nm2 /C2)(80x10-6 C)(70x10-6 C)]/ (0.5 m)2
= 201.6 N

F32 = [(9x109 Nm2 /C2)(5 0x10-6 C)(70x10-6 C)]/ (0.3 m)2
= 350 N

Conviene disponer ejes coordenados xy tal como se indica en la figura, con el origen en la carga donde deseamos calcular la fuerza resultante, en este caso en q3.
Llamando F3 a la fuerza resultante sobre q3, entonces F3
= F31 + F32 . Luego, en términos de componentes x e y :

F3x = F31x + F32x
F3y = F31y + F32y
F31x = F31cos = (201.6 N)x(40/50) = 161.3 N ; F31y
= - F31sen = -201.6x30/50 = -121 N
F32x = 0 ; F32y = F32 = 350 N
F3x = 161.3 N + 0 = 161.3 N ; F3y = -121 N + 350 N = 229 N

La magnitud de la fuerza neta F3 se obtiene de (F3)2
= (F3x)2 + (F3y>)2, resultando F3 = 280 N. El ángulo de esta fuerza se obtiene de tg = F3y/ F3x= 229/161.3
= 1.42 ==> = 54.8º.


Web Social
Bookmark and Share

Ley de Coulomb

                                        DESARROLO DE LA LEY DE COULOMB
Charles-Augustin de Coulomb  desarrolló la balanza de torsión con la que determinó las propiedades de la fuerza electrostática. Este instrumento consiste en una barra que cuelga de una fibra capaz de torcerse. Si la barra gira, la fibra tiende a hacerla regresar a su posición original, con lo que conociendo la fuerza de torsión que la fibra ejerce sobre la barra, se puede determinar la fuerza ejercida en un punto de la barra. La ley de Coulomb también conocida como ley de cargas tiene que ver con las cargas eléctricas de un material, decir, depende de si sus cargas son negativas o positivas.
 
Ley de Coulomb expresando los signos de cargas de
diferente signo, y de carga del mismo signo.
Variación de la Fuerza de Coulomb en función de la distancia.

En la barra de la balanza, Coulomb colocó una pequeña esfera cargada y a continuación, a diferentes distancias, posicionó otra esfera también cargada. Luego midió la fuerza entre ellas observando el ángulo que giraba la barra.
Dichas mediciones permitieron determinar que:
  • La fuerza de interacción entre dos cargas q_1 \,\! y q_2 \,\! duplica su magnitud si alguna de las cargas dobla su valor, la triplica si alguna de las cargas aumenta su valor en un factor de tres, y así sucesivamente. Concluyó entonces que el valor de la fuerza era proporcional al producto de las cargas:
F \,\! \propto \,\!  q_1 \,\!     y     F \,\! \propto \,\!  q_2 \,\!
en consecuencia:
 F \,\! \propto \,\!  q_1 q_2 \,\!
  • Si la distancia entre las cargas es r \,\!, al duplicarla, la fuerza de interacción disminuye en un factor de 4 (2²); al triplicarla, disminuye en un factor de 9 (3²) y al cuadriplicar r \,\!, la fuerza entre cargas disminuye en un factor de 16 (4²). En consecuencia, la fuerza de interacción entre dos cargas puntuales, es inversamente proporcional al cuadrado de la distancia:
F \,\! \propto \,\! 1\over r^2  \,\!
Asociando ambas relaciones:
F \,\! \propto \,\! q_1q_2\over r^2  \,\!
Finalmente, se introduce una constante de proporcionalidad para transformar la relación anterior en una igualdad:
 F = \kappa \frac{q_1 q_2}{r^2}  \,\!